School Nurse’s Guide to Scoliosis

What to look for, how it’s treated—and what it’s like to live with

Prepared by
The Spinal Program at Boston Children’s Hospital Orthopedic Center
Contents

- A note to school nurses ... 1
- What is scoliosis? ... 2
- What is the anatomy of scoliosis? 3
- Who gets scoliosis? .. 4
- What are the signs and symptoms of scoliosis? 5
- How is scoliosis diagnosed? ... 6
- How is scoliosis treated? .. 7
- A closer look at bracing ... 8
- What's the long-term outlook for kids with scoliosis? ... 9
- Chloe's mantra: Embrace the brace 10
- Living with scoliosis: Visceria's story 11
- Letter for your teenage student-patient 12
- Glossary .. 13
1

How this booklet can help you
This booklet can be printed as a whole unit or as individual sections to share with your students and their families. Please let us know if the booklet is helpful or if you have suggestions for improvement, by contacting the Boston Children’s Hospital’s Spinal Program.

Observation
The work you do in screening for scoliosis is essential because it helps ensure that scoliosis is identified early enough to achieve a better outcome. Once an abnormal spine curve is detected, it’s important to monitor the child’s growth since curves may progress as growth occurs. Her physician will decide on a treatment plan based on x-rays and physical exams.

Partnership
Boston Children’s Spinal Team is here to help you and your students. Please call 800-491-8429 or email scoliosis@childrens.harvard.edu with questions about scoliosis, or visit our website at bostonchildrens.org/spine.

As you know, idiopathic scoliosis accounts for 80 to 85 percent of scoliosis cases, and doesn’t happen all at once. It develops gradually over time, and may worsen quickly during rapid growth in the pre-teen and teen years.

A note to school nurses
As you know, idiopathic scoliosis accounts for 80 to 85 percent of scoliosis cases, and doesn’t happen all at once. It develops gradually over time, and may worsen quickly during rapid growth in the pre-teen and teen years.

The work you do in screening for scoliosis is essential because it helps ensure that scoliosis is identified early enough to achieve a better outcome. Once an abnormal spine curve is detected, it’s important to monitor the child’s growth since curves may progress as growth occurs. Her physician will decide on a treatment plan based on x-rays and physical exams.

T reating scoliosis early to avoid future problems
Scoliosis rarely prevents children and adolescents from living normal lives, but we hope that this booklet will help you communicate to your students and their families the importance of careful screening at age-appropriate intervals during a child’s growing years, and of taking early action if a curve is detected.

With the help of the information in this booklet, you can share these critical reasons for early screening with kids and their families:

Treatment after the curve has already become severe in adulthood is much less successful than treatment during childhood or adolescence.

Adults with moderate or severe scoliosis can have progressively worsening curves that cause cosmetic disfigurement, back pain and in extreme cases, difficulty breathing.

A note to school nurses
As you know, idiopathic scoliosis accounts for 80 to 85 percent of scoliosis cases, and doesn’t happen all at once. It develops gradually over time, and may worsen quickly during rapid growth in the pre-teen and teen years.

The work you do in screening for scoliosis is essential because it helps ensure that scoliosis is identified early enough to achieve a better outcome. Once an abnormal spine curve is detected, it’s important to monitor the child’s growth since curves may progress as growth occurs. Her physician will decide on a treatment plan based on x-rays and physical exams.

T reating scoliosis early to avoid future problems
Scoliosis rarely prevents children and adolescents from living normal lives, but we hope that this booklet will help you communicate to your students and their families the importance of careful screening at age-appropriate intervals during a child’s growing years, and of taking early action if a curve is detected.

With the help of the information in this booklet, you can share these critical reasons for early screening with kids and their families:

Treatment after the curve has already become severe in adulthood is much less successful than treatment during childhood or adolescence.

Adults with moderate or severe scoliosis can have progressively worsening curves that cause cosmetic disfigurement, back pain and in extreme cases, difficulty breathing.

A note to school nurses
As you know, idiopathic scoliosis accounts for 80 to 85 percent of scoliosis cases, and doesn’t happen all at once. It develops gradually over time, and may worsen quickly during rapid growth in the pre-teen and teen years.

The work you do in screening for scoliosis is essential because it helps ensure that scoliosis is identified early enough to achieve a better outcome. Once an abnormal spine curve is detected, it’s important to monitor the child’s growth since curves may progress as growth occurs. Her physician will decide on a treatment plan based on x-rays and physical exams.

T reating scoliosis early to avoid future problems
Scoliosis rarely prevents children and adolescents from living normal lives, but we hope that this booklet will help you communicate to your students and their families the importance of careful screening at age-appropriate intervals during a child’s growing years, and of taking early action if a curve is detected.

With the help of the information in this booklet, you can share these critical reasons for early screening with kids and their families:

Treatment after the curve has already become severe in adulthood is much less successful than treatment during childhood or adolescence.

Adults with moderate or severe scoliosis can have progressively worsening curves that cause cosmetic disfigurement, back pain and in extreme cases, difficulty breathing.

A note to school nurses
As you know, idiopathic scoliosis accounts for 80 to 85 percent of scoliosis cases, and doesn’t happen all at once. It develops gradually over time, and may worsen quickly during rapid growth in the pre-teen and teen years.

The work you do in screening for scoliosis is essential because it helps ensure that scoliosis is identified early enough to achieve a better outcome. Once an abnormal spine curve is detected, it’s important to monitor the child’s growth since curves may progress as growth occurs. Her physician will decide on a treatment plan based on x-rays and physical exams.

T reating scoliosis early to avoid future problems
Scoliosis rarely prevents children and adolescents from living normal lives, but we hope that this booklet will help you communicate to your students and their families the importance of careful screening at age-appropriate intervals during a child’s growing years, and of taking early action if a curve is detected.

With the help of the information in this booklet, you can share these critical reasons for early screening with kids and their families:

Treatment after the curve has already become severe in adulthood is much less successful than treatment during childhood or adolescence.

Adults with moderate or severe scoliosis can have progressively worsening curves that cause cosmetic disfigurement, back pain and in extreme cases, difficulty breathing.
Scoliosis is a condition in which the spine has an abnormal side-to-side “S”- or “C”-shaped curvature. In addition, the spine may also rotate or twist, pulling the ribs along with it to form a multidimensional curve. The Scoliosis Research Society defines scoliosis as a curvature of the spine measuring 10 degrees or greater on x-ray.

Most of the time, scoliosis is more of a cosmetic challenge than a health challenge, and children and teens may not experience pain or other symptoms. In more severe cases, bones may twist in a way that puts the organs at risk. Usually when this happens, surgery is required.

Scoliosis occurs and is treated as three main types:

- **Idiopathic scoliosis** is the most common form, with no definite cause. It mainly affects adolescent girls, but also appears in infants and juveniles.

- **Neuromuscular scoliosis** is associated with a neuromuscular condition such as cerebral palsy, myopathy or spina bifida.

- **Congenital scoliosis**, the least common form, is present at birth, and caused by a failure of the vertebrae to form normally.

Watch video: Scoliosis Management at Boston Children’s Hospital’s Orthopedic Center
Helping patients lead healthy, active lives

What is the anatomy of scoliosis?

The normal spine is strong and mobile. While it varies in size and shape from person to person, the healthy spine has natural front-to-back curves that enable us to walk, balance, sit, stand and twist. When these natural front-to-back curves become too large, they can present a potential problem.

The scoliotic spine is rotated or twisted to form a multi-dimensional curve. Spinal curvature from scoliosis may occur on the right or left side of the spine, or on both sides in different sections. Both the mid (thoracic) and lower (lumbar) spine may be affected by scoliosis.
Scoliosis is not rare, and mainly affects girls—many of whom have mild forms of the condition and are never even aware of it.

Three to five children out of every 1,000 develop spinal curves that are considered large enough to require treatment. Idiopathic scoliosis tends to run in families, although no definitive genetic link has been confirmed. Girls are more likely to have a curve that progresses.

Risk factors for developing idiopathic scoliosis include:

- **Age:** Signs and symptoms of scoliosis may begin to manifest themselves with the onset of puberty, during the maximum growth spurt.
- **Gender:** Girls are five to eight times more likely than boys to develop scoliosis that requires active treatment.
- **Heredity:** Idiopathic scoliosis tends to run in families.

In most cases, there is no definite cause or way to prevent the spine’s failure to grow as straight as it should. Scoliosis is a spinal abnormality—it’s neither a cause nor a result of poor posture or use of a backpack.

Visceria was treated for scoliosis as a pre-teen. As a teen, she’s now back to sports and cheerleading.
What are the signs and symptoms of scoliosis?

Because of the many possible combinations of curvatures, scoliosis can be very different in different people. Screening will reveal common signs and symptoms of scoliosis, including:

- uneven shoulder heights
- head not centered with the rest of the body
- uneven hip heights or positions
- one prominent shoulder blade
- when bending forward, the left and right sides of the back are asymmetrical

Watch video: Non-surgical management of scoliosis at Boston Children's
Sometimes curves are obvious, but other times they aren’t immediately visible.

Since scoliosis curves often aren’t painful and usually progress slowly, they can be overlooked until a child approaches puberty. The Adams Forward Bend test is a common way to look for scoliosis. During this examination, the student puts her hands together and bends forward while keeping the knees straight—making her spine visible, and curves or unevenness more obvious. The clinician can observe any unevenness in the hips, ribs or shoulder or use a scoliometer to measure the degree of a curve. If a curve measures more than 5 to 7 degrees on the scoliometer, this may indicate scoliosis. The curve’s overall impact will depend on the child’s age and bone maturity.

During your student’s physical exams, her physician will be looking for and measuring abnormal contours that indicate scoliosis. Through physical exams and diagnostic testing, the doctor will determine the:

- shape of the curve (“S”- or “C”- shape; involvement of ribs and muscles)
- location of the curve (upper thoracic spine; lower lumbar spine; or both—thoracolumbar)
- direction of the curve (bend to left or right)
- angle of the curve in degrees (Cobb angle)

Once a problem is detected, doctors use medical and family history, physical exams and diagnostic tests to determine the nature and extent of your student’s scoliosis.

Commonly done:
- x-rays (front and side)

Occasionally done:
- Magnetic resonance imaging (MRI)

Rarely done:
- computerized tomography scan (CT or CAT scan)
- blood tests
- ultrasound (sonogram)
- bone scans
- bone density scans (dual-energy x-ray absorptiometry, DEXA, DXA)
- pulmonary function tests

How is scoliosis diagnosed?

Since scoliosis curves often aren’t painful and usually progress slowly, they can be overlooked until a child approaches puberty. The Adams Forward Bend test is a common way to look for scoliosis. During this examination, the student puts her hands together and bends forward while keeping the knees straight—making her spine visible, and curves or unevenness more obvious. The clinician can observe any unevenness in the hips, ribs or shoulder or use a scoliometer to measure the degree of a curve. If a curve measures more than 5 to 7 degrees on the scoliometer, this may indicate scoliosis. The curve’s overall impact will depend on the child’s age and bone maturity.

During your student’s physical exams, her physician will be looking for and measuring abnormal contours that indicate scoliosis. Through physical exams and diagnostic testing, the doctor will determine the:

- shape of the curve (“S”- or “C”- shape; involvement of ribs and muscles)
- location of the curve (upper thoracic spine; lower lumbar spine; or both—thoracolumbar)
- direction of the curve (bend to left or right)
- angle of the curve in degrees (Cobb angle)

Once a problem is detected, doctors use medical and family history, physical exams and diagnostic tests to determine the nature and extent of your student’s scoliosis.

Commonly done:
- x-rays (front and side)

Occasionally done:
- Magnetic resonance imaging (MRI)

Rarely done:
- computerized tomography scan (CT or CAT scan)
- blood tests
- ultrasound (sonogram)
- bone scans
- bone density scans (dual-energy x-ray absorptiometry, DEXA, DXA)
- pulmonary function tests
Treatment for scoliosis depends on the nature and severity of the condition.

Treatment without surgery

Simple observation and monitoring: Once an abnormal spinal curve has been detected, it’s important to monitor it closely as the child grows. In many cases, this may be the only treatment needed. The child’s physician will determine the appropriate treatment plan and follow-up based on her X-rays and physical exams. Referral to an orthopedic specialist may be recommended.

Physical therapy: Physical therapy may address any pain and imbalance that can be associated with spinal abnormalities.

Bracing: If your growing student’s curve shows significant worsening or is already greater than 30 degrees, the physician may recommend a bracing program, in which a scoliosis brace is custom-designed to suit a particular curve. The brace holds the spine in a straighter position while it grows, both to help correct the curve and prevent it from getting worse. This may help avoid the need for surgery. (See next section for more on bracing.)

Casting: In certain situations—as in some cases of early-onset (infantile) scoliosis—body casting is done to help straighten the spine.

Treatment with surgery

In more severe cases, surgery can help correct spinal problems.

Spinal fusion: The most common surgical procedure for treating spinal problems in adolescents is fusion and instrumentation combined to correct and solidify the curve.

For younger growing children:

- **Dual posterior growing rods** control spinal deformity while allowing spinal growth with periodic lengthening (for early-onset scoliosis).
- **Expansion thoracostomy/VEPTR™ (titanium rib)** is a procedure to control chest and spine deformity while permitting growth of both the chest and spine.
- **Vertebral stapling** is a minimally-invasive surgical alternative to bracing for scoliosis in some circumstances.
- **Hemivertebra and wedge resections** (for congenital scoliosis) is removal of the abnormal spine segment and reconstruction of the spine.
- **Spinal osteotomy** is the controlled breaking or cutting and realigning of bone into a corrected position. It may be performed when there is significant deformity.
Guiding growth

8

A closer look at bracing

Treatment of your student’s scoliosis depends on the curvature’s location and degree of severity.

Slight curves (measuring less than 20 degrees), usually require no treatment, but must be monitored carefully for worsening during growth.

If your student’s curve shows significant worsening or is already greater than 30 degrees and she is still growing, her doctor may recommend a bracing program.

A scoliosis brace is designed especially for each patient and her particular curve, and may help avoid surgery. Your student will need to wear her brace for the prescribed daily time until she finishes growing. Most braces can be hidden beneath normal clothing, and the student can continue to do all athletic activities.

The child’s physician usually works with a team of professionals, such as orthotists and physical therapists, who will help her adjust to bracing treatment. An orthotist is a trained professional in the construction and fitting of the spinal brace. Construction of the individual customized brace includes measurement of the patient’s body contour, manufacturing of the brace, and final fitting of the brace to the patient. The process takes several visits to the orthotist and several weeks to complete.

The physical therapist (PT) will evaluate the patient’s posture, muscle strength and flexibility. The PT will provide her with a home exercise program designed specifically for her. This program helps to stretch and strengthen the child’s muscles so that she is more comfortable in her brace.

A bracing program can be difficult, and the student may need help in organizing her daily activities. In many cases, clinical staff will help the child and her parents with their questions and appointments. Staff members will also teach the child how to care for herself and her brace, give her a schedule to follow and help her plan day-to-day activities.
As the child grows, an orthopedist will monitor her curve through frequent check-ups.

No matter how old your student is, she can be encouraged to live normally and participate in sports or school activities. These will add greatly to her general health and sense of well-being.

The outlook for your student greatly depends on the nature and severity of her scoliosis and her age. Since older teens have already completed the majority of growth, their bones probably won’t evolve as much as a younger child’s would. Early diagnosis and early treatment can improve the outlook for many forms of scoliosis—and most children and teens diagnosed with scoliosis can look forward to normal, active lives.

What’s the long-term outlook for kids with scoliosis?
Scoliosis is and always will be a struggle for me, but I will not let it stop me from doing anything. I have learned to love my spine. It defines who I am, and I am a stronger person because of my brace—emotionally, mentally and physically.

In August 2012, I discovered I was crooked. My cross-country coach noticed that I ran tilted, with one shoulder much higher than the other. When I saw the doctor, he told me I had scoliosis. My 18-degree “S”-curve increased to 24 degrees in December 2012. By April 2013, I learned that my upper thoracic curve and lower curve had increased to 32 and 25 degrees, respectively.

Running free
I knew that I would eventually need a brace, but when the doctor showed me that horrible piece of plastic, it was a whole different story. I turned into a statue.

When my brace was ready for me to wear, the orthotist who makes the braces showed me an assortment of patterns—Scooby-Doo, butterflies and rainbow—but I chose flesh-colored, the most inconspicuous of them all.

My brace stretches from over my hips, with the left side reaching down to my thigh, to the top of my rib bones in the front and above my shoulder blades in the back. When I first tried it on, I felt like I was strapped in a corset. I was instructed to ease into my brace and wear it a couple of hours at a time. The first night I wore the brace, I felt like a turtle flipped on its shell. When I started to wear it at school, I wore it for three hours and then took it off in the nurse’s office. In a few days, I became frustrated with having to go to the nurse’s office, so I wore it the entire day. My only break from the brace was showering and running.

When I run, I feel like I am released from a cage. I love the feeling of being free, but sometimes it feels foreign and weird to be without my brace.

Like any 15-year-old, clothes and fashion are very important, but when I first tried on my clothes with the brace, its entire outline was visible. At first, this upset me, but then I took it on as a fashion challenge. I rearranged, layered and accessorized my clothes until the shape of my brace was hardly noticeable.

Last summer, my mom and I started the “Chloe Project,” my way of fighting scoliosis. To strengthen my muscles equally, my body must be neutral.

Chloe’s mantra: Embrace the brace
By: Chloe Conway, guest blogger. Reprinted with permission from Thriving.
After talking it over with my orthopedic surgeon from Boston Children’s Hospital Orthopedic Center, M. Timothy Hresko, MD, I started a new exercise program. I swam every other day (my body was neutral in the water). I do Pilates once a week, as well as Schroth physical therapy, a German technique designed for scoliosis. There are postural and breathing exercises to help neutralize the curve of the spine and help “de-rotate” it. To perform the exercises, I had to know everything about the curves and twists of my spine, and it requires lots of concentration. But I do anything I can to fight back because I don’t want to look back with regret for not attempting everything to fight scoliosis.

My support network
I am blessed to have the best family and friends to support me. Originally, I was afraid that my friends would think my brace is weird, but instead, they seemed excited about it. One day, I had put my brace on the ground at cross-country practice, and one of my friends asked to try it on. I said “yes” and strapped her up. After her turn, every other girl on the team asked to try it on, and not one of them lasted more than 30 seconds in it.

At the beginning of my scoliosis journey, I thought I was all alone. Even with the most supportive family and friends, I felt that I had no one to relate to who would truly understand what I was going through. That is when I became a Curvy Girl.

Curvy Girls is an international support group for girls with scoliosis. When I found out there was no New Hampshire (NH) Chapter, I created one. We meet once a month and talk about our braces, surgery, clothing, pain and anything to do with scoliosis. There are plenty of tears, but also lots of laughter. Wearing my brace for the correct amount of hours is tough, but starting Curvy Girls NH and meeting other girls with scoliosis has helped all of us.

I would not change a thing because without my scoliosis, I would not have met so many wonderful and inspiring girls who have become my friends. I hope to help other girls “embrace the brace” like me. Although I do not know how many years I will wear my brace, or if I will have to have spinal surgery, I am ready to face whatever comes my way and not back down.

Chloe’s mantra, continued

After talking it over with my orthopedic surgeon from Boston Children’s Hospital Orthopedic Center, M. Timothy Hresko, MD, I started a new exercise program.

I swam every other day (my body was neutral in the water). I do Pilates once a week, as well as Schroth physical therapy, a German technique designed for scoliosis. There are postural and breathing exercises to help neutralize the curve of the spine and help “de-rotate” it. To perform the exercises, I had to know everything about the curves and twists of my spine, and it requires lots of concentration. But I do anything I can to fight back because I don’t want to look back with regret for not attempting everything to fight scoliosis.

My support network
I am blessed to have the best family and friends to support me. Originally, I was afraid that my friends would think my brace is weird, but instead, they seemed excited about it. One day, I had put my brace on the ground at cross-country practice, and one of my friends asked to try it on. I said “yes” and strapped her up. After her turn, every other girl on the team asked to try it on, and not one of them lasted more than 30 seconds in it.

At the beginning of my scoliosis journey, I thought I was all alone. Even with the most supportive family and friends, I felt that I had no one to relate to who would truly understand what I was going through. That is when I became a Curvy Girl.

Curvy Girls is an international support group for girls with scoliosis. When I found out there was no New Hampshire (NH) Chapter, I created one. We meet once a month and talk about our braces, surgery, clothing, pain and anything to do with scoliosis. There are plenty of tears, but also lots of laughter. Wearing my brace for the correct amount of hours is tough, but starting Curvy Girls NH and meeting other girls with scoliosis has helped all of us.

I would not change a thing because without my scoliosis, I would not have met so many wonderful and inspiring girls who have become my friends. I hope to help other girls “embrace the brace” like me. Although I do not know how many years I will wear my brace, or if I will have to have spinal surgery, I am ready to face whatever comes my way and not back down.

Chloe’s mantra, continued
Reprinted with permission from Thriving, a blog of Boston Children’s

Living with scoliosis: Visceria’s story

One patient’s story: living with scoliosis
by Boston Children’s staff on November 10, 2010

Visceria Givans is a student athlete, diagnosed with scoliosis in grade school. She received corrective spine surgery at Boston Children’s a few years later and is actively playing sports again. In the following post she discusses her treatment, recovery and how she refused to let scoliosis define her or impact her self-esteem.

Getting checked for scoliosis at school is a little strange. First, you have to wear a bathing suit under your clothes that day because the school nurse needs to be able to see the entire line of your back to make sure your spine is growing correctly. Then, they disrupt the whole school day by checking all the kids for curvatures in their spine, one at a time.

When I had my first scoliosis test back in the fourth grade, it was even stranger for me because after it was over the nurse mentioned that it looked like my back was growing a little crooked, and it was something we’d need to keep an eye on.

I didn’t know exactly what to think, but the nurse didn’t seem too worried so my parents and I didn’t think much about it either. For the next few years my doctor checked my spine regularly and when it was clear the curve was getting worse he suggested I wear a brace to try to correct it.

Wearing the brace took some getting used to. For starter’s it’s pretty big, so it stretched out a lot of my clothes. Secondly, it’s not the most comfortable thing in the world to spend 20 hours a day in a brace that covers you from your shoulders to your belly, so even relaxing things like sitting and watching TV became kind of a chore. Not a perfect situation, but after a while you get used to it and find ways to adapt. I bought bigger clothes that looked good but still left room for the brace, and quickly learned which positions were more comfortable with my brace on. The hardest part was when it prevented me from cheerleading and playing sports, which have always been a big part of my life, but I managed to find other ways to help the team. When my scoliosis kept me on the sidelines I assisted the coaches and offered suggestions and encouragement to my teammates.

After a year with the brace it became such a regular part of my life I almost forgot I had it on. I think the brace may have forgotten too, because by the time I turned 13, Dr. Karlin, the scoliosis specialist I saw at Boston Children’s, said it didn’t seem to be doing enough to correct the curve.
11

Living with scoliosis: continued

Opposite: Visceria after having her scoliosis treated at Boston Children’s Hospital. I didn’t feel any different, and it didn’t hurt in any way, but my doctor explained that as time went on it could get a lot worse. I could develop a hunch back, and if my spine got too crooked it could press against some of my organs which could lead to very serious medical problems as I got older. Dr. Karlin explained that the best way to prevent this was surgery, where they’d permanently straighten my spine by fusing it with a metal rod.

The surgery took over nine hours, but when I woke up my spine was straighter and I was a full two inches taller. My mom couldn’t believe how different I looked standing that straight. She said she always thought my slumping was because I was a teenager and I was being moody, but it really was just the shape of my back!

Even though my surgery was over, the biggest challenge of my scoliosis still lay ahead: physical therapy and recovery. At first everyday things like getting out of bed and walking up and down stairs were real challenges; I had to work closely with both my physical therapist and my parents to relearn how to do even the simplest tasks. I also lost a lot of weight because the medication I was on took away my appetite, but as soon as I got off the meds I started eating again.

It’s been over a year since my surgery and I’m back to cheerleading and playing lots of sports, which feels great. It also feels good to know that my story can help other kids. Last year a girl a few years younger than me found out she had scoliosis, and I was happy to be able to tell her that it doesn’t have to affect her life too much, or keep her from doing the things she liked. It may not be the most original piece of advice, and really it applies to everyone and not just people with scoliosis, but I told her the best thing she could do was to just be confident in who she was. If you are a strong person with a healthy self-esteem it’s easy to not let something like a curved spine, or any other medical condition, define who you are as a person.

Read another patient story about Anjellina who overcame two scoliosis surgeries.
Dear [Name],

Being a teenager is complex enough already, so handling your scoliosis might seem even harder. Luckily, there are a lot of ways you can treat it, and continue living a normal life.

If you’re undergoing bracing and physical therapy for scoliosis, you can take charge of your medical appointments and learn more about taking personal responsibility for your health. If your scoliosis is mild or moderate, you may wonder why we need to monitor and treat it since it may not bother you or be painful—but know that we have your best interests in mind.

Fortunately, kids like you with scoliosis can usually live happy, healthy and normal lives. Even teens with braces or who require surgery have been able to continue playing sports and leading active lives. Checking in regularly with your doctor can help this process go even more smoothly.

The best part is that the sooner you treat it, the better off you may be. So dealing with scoliosis now could make your life easier later. It’s important for you to know that if left untreated until you’re an adult, your moderate or severe scoliosis can worsen, resulting in curves that might change your appearance, cause back pain and in severe cases, make it hard to breathe.

Treatment in adulthood after the curve has already become severe is less successful than treatment during your teenage years. So, by treating you early, we hope to keep curves from becoming problems when you reach adulthood.

It may also help you to know that you can participate in sports and other normal activities—your general health will actually improve with an active lifestyle.

If you feel overwhelmed, depressed or anxious about the treatment of your scoliosis, please speak to your parent, doctor, counselor or me. We’re all on your team—and we’re all here to help.

Sincerely,

Your School Nurse

For you to share with your teenage student-patient
Glossary

Terms your students and their families may need to know

Adams Forward Bend test: a screening tool for scoliosis.

Adolescent scoliosis: a classification of idiopathic scoliosis representing the vast majority of cases—mostly occurring in girls ages 10 to 18; many cases of this kind of scoliosis don’t require any kind of treatment.

Brace, bracing (spinal orthosis): If a curve significantly worsens or is already greater than 30 degrees, a physician may recommend a bracing program, in which a brace is designed specifically for a particular curve. The brace holds the spine in a straighter position while the child or teen grows in order to partly correct the curve or prevent it from increasing.

Casting: an option for holding the spine in a straighter position while growing. This is used in specific situations, as in some cases of early-onset (infantile) idiopathic scoliosis.

Cobb angle: an angular measurement on x-ray to evaluate the degree and severity of scoliosis curves.

Congenital scoliosis: The spine forms and develops between three and six weeks after conception. Congenital scoliosis results from abnormal in utero spinal development, where a vertebra either doesn’t form at all or only forms partially, or there is a lack of separation of the vertebrae.

Diagnosis: identifying disease or injury through examination, testing and observation.

Dual posterior growing rods: Devices affixed to the spine (for early-onset scoliosis). These control spinal deformity while allowing spinal growth with periodic lengthening.

Idiopathic scoliosis: the most common form of scoliosis. “Idiopathic” simply means that there’s no known cause. Nothing a parent or child did caused the problem, and there’s nothing anyone could have done to prevent it.

Infantile idiopathic scoliosis (one of several types of early-onset scoliosis): a classification of idiopathic scoliosis representing about 5 percent of cases. The only type of scoliosis occurring more often in boys from birth to 3 years of age; often resolves on its own, but can sometimes be serious.

Instrumentation: the metal rods, hooks, screws and wires implanted during spinal fusion surgery to correct the spinal curve, and secure the spine in position while the fusion heals and becomes solid.
Objective: To provide a comprehensive overview of the spine, its abnormalities, and treatments.

Spinal abnormality (spinal problem): A condition in which the spine is abnormal. It may be that the spine's structure has developed abnormally—for example, congenital scoliosis or congenital kyphosis. Some are the result of nerve or muscle (neuromuscular) diseases or injuries—for example, cerebral palsy. In some cases, there is no definite cause (idiopathic) for the spine's failure to develop normally.

Spinal fusion: Usually a solid fusion (solidification) of the curved part of the spine, achieved by operating on the spine, adding bone chips and allowing the vertebral bones and bone chips to slowly heal together to form a solid mass of bone called a fusion.

Spine (spinal column, vertebral column): The series of moving vertebrae forming the axis of the skeleton and protecting the spinal cord.

Glossary:

Orthotics: The science of designing and fitting of devices such as braces to treat orthopedic conditions.

Physical therapy: A rehabilitative health specialty that uses therapeutic exercises and equipment to help patients improve or regain muscle strength, mobility and other physical capabilities.

Progression, curve progression: Worsening of a scoliosis curve.

Scoliosis: A spinal condition in which the spine, in addition to the normal front-to-back curvature, has an abnormal side-to-side “S”- or “C”-shaped curvature. The spine is also rotated or twisted, pulling the ribs along with it. Scoliosis occurs in three main types: idiopathic (no definite cause), neuromuscular (associated with neuromuscular diseases) and congenital (present at birth).

Scoliometer: A surface measurement device for evaluating the angle of trunk rotation (ATR or scoliometer angle, which is different from the ‘Cobb’ angle measured on X-ray).

Spinal cord: A nerve bundle within the vertebral column that extends down from the brain stem. It conducts signals in both directions between the brain and extremities, and allows for bodily motion and sensation.

Spinal abnormality (spinal problem): A condition in which the spine is abnormal. It may be that the spine’s structure has developed abnormally—for example, congenital scoliosis or congenital kyphosis. Some are the result of nerve or muscle (neuromuscular) diseases or injuries—for example, cerebral palsy. In some cases, there is no definite cause (idiopathic) for the spine’s failure to develop normally.

Spinal fusion: Usually a solid fusion (solidification) of the curved part of the spine, achieved by operating on the spine, adding bone chips and allowing the vertebral bones and bone chips to slowly heal together to form a solid mass of bone called a fusion.

Spine curves, normal and abnormal: Front-to-back and side-ways curves of the spine.

Scoliosis: A spinal condition in which the spine, in addition to the normal front-to-back curvature, has an abnormal side-to-side “S”- or “C”-shaped curvature. The spine is also rotated or twisted, pulling the ribs along with it. Scoliosis occurs in three main types: idiopathic (no definite cause), neuromuscular (associated with neuromuscular diseases) and congenital (present at birth).

Scoliometer: A surface measurement device for evaluating the angle of trunk rotation (ATR or scoliometer angle, which is different from the ‘Cobb’ angle measured on X-ray).

Spinal cord: A nerve bundle within the vertebral column that extends down from the brain stem. It conducts signals in both directions between the brain and extremities, and allows for bodily motion and sensation.

Spinal abnormality (spinal problem): A condition in which the spine is abnormal. It may be that the spine’s structure has developed abnormally—for example, congenital scoliosis or congenital kyphosis. Some are the result of nerve or muscle (neuromuscular) diseases or injuries—for example, cerebral palsy. In some cases, there is no definite cause (idiopathic) for the spine’s failure to develop normally.

Spinal fusion: Usually a solid fusion (solidification) of the curved part of the spine, achieved by operating on the spine, adding bone chips and allowing the vertebral bones and bone chips to slowly heal together to form a solid mass of bone called a fusion.

Spine curves, normal and abnormal: Front-to-back and side-ways curves of the spine.

Scoliosis: A spinal condition in which the spine, in addition to the normal front-to-back curvature, has an abnormal side-to-side “S”- or “C”-shaped curvature. The spine is also rotated or twisted, pulling the ribs along with it. Scoliosis occurs in three main types: idiopathic (no definite cause), neuromuscular (associated with neuromuscular diseases) and congenital (present at birth).

Scoliometer: A surface measurement device for evaluating the angle of trunk rotation (ATR or scoliometer angle, which is different from the ‘Cobb’ angle measured on X-ray).

Spinal cord: A nerve bundle within the vertebral column that extends down from the brain stem. It conducts signals in both directions between the brain and extremities, and allows for bodily motion and sensation.

Spinal abnormality (spinal problem): A condition in which the spine is abnormal. It may be that the spine’s structure has developed abnormally—for example, congenital scoliosis or congenital kyphosis. Some are the result of nerve or muscle (neuromuscular) diseases or injuries—for example, cerebral palsy. In some cases, there is no definite cause (idiopathic) for the spine’s failure to develop normally.

Spinal fusion: Usually a solid fusion (solidification) of the curved part of the spine, achieved by operating on the spine, adding bone chips and allowing the vertebral bones and bone chips to slowly heal together to form a solid mass of bone called a fusion.

Spine curves, normal and abnormal: Front-to-back and side-ways curves of the spine.

Scoliosis: A spinal condition in which the spine, in addition to the normal front-to-back curvature, has an abnormal side-to-side “S”- or “C”-shaped curvature. The spine is also rotated or twisted, pulling the ribs along with it. Scoliosis occurs in three main types: idiopathic (no definite cause), neuromuscular (associated with neuromuscular diseases) and congenital (present at birth).

Scoliometer: A surface measurement device for evaluating the angle of trunk rotation (ATR or scoliometer angle, which is different from the ‘Cobb’ angle measured on X-ray).

Spinal cord: A nerve bundle within the vertebral column that extends down from the brain stem. It conducts signals in both directions between the brain and extremities, and allows for bodily motion and sensation.

Spinal abnormality (spinal problem): A condition in which the spine is abnormal. It may be that the spine’s structure has developed abnormally—for example, congenital scoliosis or congenital kyphosis. Some are the result of nerve or muscle (neuromuscular) diseases or injuries—for example, cerebral palsy. In some cases, there is no definite cause (idiopathic) for the spine’s failure to develop normally.

Spinal fusion: Usually a solid fusion (solidification) of the curved part of the spine, achieved by operating on the spine, adding bone chips and allowing the vertebral bones and bone chips to slowly heal together to form a solid mass of bone called a fusion.

Spine curves, normal and abnormal: Front-to-back and side-ways curves of the spine.

Scoliosis: A spinal condition in which the spine, in addition to the normal front-to-back curvature, has an abnormal side-to-side “S”- or “C”-shaped curvature. The spine is also rotated or twisted, pulling the ribs along with it. Scoliosis occurs in three main types: idiopathic (no definite cause), neuromuscular (associated with neuromuscular diseases) and congenital (present at birth).

Scoliometer: A surface measurement device for evaluating the angle of trunk rotation (ATR or scoliometer angle, which is different from the ‘Cobb’ angle measured on X-ray).

Spinal cord: A nerve bundle within the vertebral column that extends down from the brain stem. It conducts signals in both directions between the brain and extremities, and allows for bodily motion and sensation.

Spinal abnormality (spinal problem): A condition in which the spine is abnormal. It may be that the spine’s structure has developed abnormally—for example, congenital scoliosis or congenital kyphosis. Some are the result of nerve or muscle (neuromuscular) diseases or injuries—for example, cerebral palsy. In some cases, there is no definite cause (idiopathic) for the spine’s failure to develop normally.

Spinal fusion: Usually a solid fusion (solidification) of the curved part of the spine, achieved by operating on the spine, adding bone chips and allowing the vertebral bones and bone chips to slowly heal together to form a solid mass of bone called a fusion.

Spine curves, normal and abnormal: Front-to-back and side-ways curves of the spine.

Scoliosis: A spinal condition in which the spine, in addition to the normal front-to-back curvature, has an abnormal side-to-side “S”- or “C”-shaped curvature. The spine is also rotated or twisted, pulling the ribs along with it. Scoliosis occurs in three main types: idiopathic (no definite cause), neuromuscular (associated with neuromuscular diseases) and congenital (present at birth).

Scoliometer: A surface measurement device for evaluating the angle of trunk rotation (ATR or scoliometer angle, which is different from the ‘Cobb’ angle measured on X-ray).

Spinal cord: A nerve bundle within the vertebral column that extends down from the brain stem. It conducts signals in both directions between the brain and extremities, and allows for bodily motion and sensation.

Spinal abnormality (spinal problem): A condition in which the spine is abnormal. It may be that the spine’s structure has developed abnormally—for example, congenital scoliosis or congenital kyphosis. Some are the result of nerve or muscle (neuromuscular) diseases or injuries—for example, cerebral palsy. In some cases, there is no definite cause (idiopathic) for the spine’s failure to develop normally.

Spinal fusion: Usually a solid fusion (solidification) of the curved part of the spine, achieved by operating on the spine, adding bone chips and allowing the vertebral bones and bone chips to slowly heal together to form a solid mass of bone called a fusion.

Spine curves, normal and abnormal: Front-to-back and side-ways curves of the spine.

Scoliosis: A spinal condition in which the spine, in addition to the normal front-to-back curvature, has an abnormal side-to-side “S”- or “C”-shaped curvature. The spine is also rotated or twisted, pulling the ribs along with it. Scoliosis occurs in three main types: idiopathic (no definite cause), neuromuscular (associated with neuromuscular diseases) and congenital (present at birth).

Scoliometer: A surface measurement device for evaluating the angle of trunk rotation (ATR or scoliometer angle, which is different from the ‘Cobb’ angle measured on X-ray).

Spinal cord: A nerve bundle within the vertebral column that extends down from the brain stem. It conducts signals in both directions between the brain and extremities, and allows for bodily motion and sensation.

Spinal abnormality (spinal problem): A condition in which the spine is abnormal. It may be that the spine’s structure has developed abnormally—for example, congenital scoliosis or congenital kyphosis. Some are the result of nerve or muscle (neuromuscular) diseases or injuries—for example, cerebral palsy. In some cases, there is no definite cause (idiopathic) for the spine’s failure to develop normally.

Spinal fusion: Usually a solid fusion (solidification) of the curved part of the spine, achieved by operating on the spine, adding bone chips and allowing the vertebral bones and bone chips to slowly heal together to form a solid mass of bone called a fusion.

Spine curves, normal and abnormal: Front-to-back and side-ways curves of the spine.